

Evaluation of U-Pb laser ablation ICPMS data reduction software: an inter-laboratory comparison

Simon Jackson and Jan Kosler

The Initiative

- To determine best practices in LA-ICP-MS U-Pb data processing
- Provide a set of (reasonably) standardized procedures
- Publish these as a paper(s) in a thematic issue

Software Evaluation

- Software comparison proposed at Charleston Workshop, 2013.
- Aims to evaluate & improve existing data-reduction packages
- Develop and distribute real data sets to developers and users of various software packages
 - 30 analyses of unknown zircon Z9910, previously dated by ID-TIMS at the GSC
 - Analysed in 5 blocks of 6 analyses with interspersed analyses of 91500 (14) for calibration, and GJ-1 (5) and Temora2 (5) as secondary standards

Instrumentation and Conditions

Parameter	Conditions
Laser Ablation system	Photon Machines Analyte.193
Sample cell	Helex 2-volume (99% washout in <0.7s)
ICP-MS	Agilent 7700 (Q) with additional interface pump
Spot size	34 µm
Rep rate	5 Hz
Gas blank	30 s
Ablation	60 s
Element list (dwell time in ms)	²⁷ Al(1), ²⁹ Si(5), ⁸⁸ Sr(5), ⁹⁶ Zr(5), ²⁰² Hg(20), ²⁰⁴ Pb(20), ²⁰⁶ Pb(15), ²⁰⁷ Pb(50), ²⁰⁸ Pb(10), ²³² Th(10), ²³⁸ U(10)
Total acquisition time	100 s

Zircon Z9910 ID-TIMS data

						Isotopic Ratios ⁴							
Fraction	Wt.	U	Pb ¹	206Pb ²	Pb ³	208Pb	<u>207Pb</u>	±1SE	<u>206Pb</u>	±1SE	Corr.⁵	<u>207Pb</u>	±1SE
	ug	ppm	ppm	204Pb	pg	206Pb	235U	Abs	238U	Abs	Coeff.	206Pb	Abs
08-SNB-T170A (Z9910)													
A1 (Z)	15	85	7	3779	1.5	0.22	0.54459	0.00080	0.07086	0.00009	0.78	0.05574	0.00005
A2 (Z)	12	144	11	5736	1.3	0.21	0.54529	0.00072	0.07084	0.00008	0.82	0.05583	0.00004
A4 (Z)	7	162	12	2691	1.9	0.21	0.54579	0.00081	0.07083	0.00008	0.76	0.05589	0.00005
A5 (Z)	7	76	6	2837	0.8	0.20	0.54458	0.00089	0.07069	0.00008	0.75	0.05587	0.00006
A6 (Z)	9	77	6	590	5.2	0.24	0.54856	0.00167	0.07095	0.00008	0.69	0.05608	0.00013

	Ages (Ma) ⁶							
Fraction	<u>206Pb</u>	±2SE	<u>207Pb</u>	±2SE	<u>207Pb</u>	±2SE	%	
	238U		235U		206Pb		Disc	
08-SNB-T170A (Z9910)								
A1 (Z)	441.4	1.0	441.4	1.1	441.9	4.1	0.1	
A2 (Z)	441.2	1.0	441.9	1.0	445.7	3.3	1.0	
A4 (Z)	441.1	1.0	442.2	1.1	448.0	4.3	1.6	
A5 (Z)	440.3	1.0	441.4	1.2	447.4	4.8	1.6	
A6 (Z)	441.9	1.0	444.1	2.2	455.5	10.5	3.1	

Zircon Z9910 ID-TIMS data

data-point error ellipses are 25

Zircon Z9910 ID-TIMS data

box heights are 2σ

Zircon 91500

Zircon Z9910 Drill through

Zircon Z9910 Common Pb

Zircon Z9910 Common Pb

Zircon Z9910 Spikes (U)

Software Packages Evaluated

Software	Operator	ID.	Version and comments				
lolite	"A" C. Paton	"A"v. 2.3CPv. 2.5, UPb_Geochronology3					
Iolite/VizualAge	J. Petrus JP VA DRS v. 2013.02, lolite v. 2.5, Exponential fractionation model "B" "B" VA DRS v. 2013.02, lolite v. 2.5, Double exponential fractionation model, no Pb						
UPb.Age	L. Scolari	LS	v. 300413				
GLITTER	W. Powell S. Jackson	WP SJ	v. 4.4.4 v. 4.4.2, spikes filtered				
UranOS	I. Dunkl I. Dunkl	ID ID'15	v. 2.01 v. 2.06				
UPb Redux	N. McLean	NM	Not included				

Zircon Z9910 Whole signal integrated

Zircon Z9910 206Pb/238U Ages

²⁰⁶Pb/²³⁸U Age Relative Spread in Data (Max-Min)

Canada

lolite Concordia

CP

"**A**"

Iolite Weighted Mean ²⁰⁶Pb/²³⁸U Age

"**A**"

CP

Iolite/VizualAge Concordia

"B"

Iolite/VizualAge Weighted Mean ²⁰⁶Pb/²³⁸U Age

JP

"**B**"

GLITTER Concordia

WP

GLITTER Weighted Mean ²⁰⁶Pb/²³⁸U Age

SJ

WP

UranOS Concordia

ID'15

UranOS Wt. Mean ²⁰⁶Pb/²³⁸U Age

ID

ID'15

UPb.Age Concordia and Weighted Mean ²⁰⁶Pb/²³⁸U Age

LS

LS

Zircon Z9910 ²⁰⁷Pb/²⁰⁶Pb Ratios

²⁰⁷Pb/²⁰⁶Pb Ratio Relative Spread in Data (Max-Min)

Summary

ID	W	t. Mean 2	06/238 A	ge	Wt. Mean 207/206 Ratio			
	age (Ma)	95% conf	MSWD	Rel. Diff.	ratio	95% conf	MSWD	Rel. Diff.
"A"-Iolite	432.9	3.0	2.4	1.9%	0.05689	1.05%	1.6	-1.9%
CP-Iolite	432.4	2.6	5.6	2.0%	0.05675	0.86%	3.3	-1.6%
JP-Iolite/VA	433.7	3.5	13	1.7%	0.05632	0.60%	1.9	-0.9%
"B"-Iolite/VA	433.0	2.5	5.9	1.8%	0.05659	0.81%	4.4	-1.3%
SJ-GLITTER	434.8	2.4	3.4	1.4%	0.05620	0.62%	0.60	-0.6%
WP-GLITTER	434.5	2.8	2.1	1.5%	0.05619	0.57%	0.79	-0.6%
ID-UranOS	438.5	3.0	1.4	0.6%	0.05680	1.16%	2.1	-1.7%
ID'15-UranOS	434.9	3.2	2.9	1.4%	0.05646	0.92%	1.4	-1.1%
LS-UPb.Age	434.3	3.3	3.1	1.6%	0.05687	0.95%	2.8	-1.8%
Max	438.5	3.5	13.0	2.0%	0.05689	1.16%	4.4	-0.6%
Min	432.4	2.4	1.4	0.6%	0.05619	0.57%	0.6	-1.9%
Rel. Diff.	1.4%				1.3%			

Conclusions

- Processing of LA-ICP-MS U/Pb data induces significant variations in the results. In this study, typically:
 - Ca. 3.1% on an individual ²⁰⁶Pb/²³⁸U age, 2.8% on an individual ²⁰⁷Pb/²⁰⁶Pb ratio
 - Up to 1.4% on the weighted mean ²⁰⁶Pb/²³⁸U age, 1.3% on the weighted mean ²⁰⁷Pb/²⁰⁶Pb ratio
 - Encouragingly, excluding 1 result, the spread of weighted mean ²⁰⁶Pb/²³⁸U ages is only 0.6% (± 0.3%)
 - However, the excluded result is the only one that agrees with the ID-TIMS age (within 95% confidence interval)
- All weighted mean ²⁰⁶Pb/²³⁸U ages are young (0.6-2.0%)
 - Various approaches to correct Pb/U fractionation operate equally well, but are not perfect (precise but not accurate)
- Results are both software and operator dependent

Conclusions

- MSWD's for the weighted mean ²⁰⁶Pb/²³⁸U ages are all >1, mostly >2, indicating excess scatter (observed scatter exceeds that predicted by the quoted uncertainties):
 - variable Pb/U fractionation
 - single channel spikes, especially U
 - common Pb
- MSWD's for ²⁰⁷Pb/²⁰⁶Pb are >1, except one package (both users)
 - Low MSWD's seem to reflect more effective avoidance of common Pb through judicious signal interval selection
- No reported data were common Pb-corrected (?) despite significant evidence of its presence
- The differences in reported ages and uncertainties are sufficient to cause significant differences in interpreted age when using unconstrained regressions

Recommendations

- Need to explore new approaches to mitigate/correct Pb/U fractionation
 - Annealing?
 - New software corrections
- Need to instigate and more widely apply common-Pb correction AND, as ever,
- Judicious (painstaking) selection of integration intervals to avoid common Pb (AI, Sr, Ba), zones of Pb loss, and other artefacts
- Still need to instigate/apply more robust error propagation (see Horstwood et al., submitted)

