

Evaluation of U-Pb laser ablation ICPMS data reduction software: an inter-laboratory comparison

Simon Jackson and Jan Kosler

The Initiative

- To determine best practices in LA-ICP-MS U-Pb data processing
- Provide a set of (reasonably) standardized procedures
- Publish these as a paper(s) in a thematic issue

Software Evaluation

- Software comparison proposed at Charleston Workshop, 2013.
- Aims to evaluate \& improve existing data-reduction packages
- Develop and distribute real data sets to developers and users of various software packages
- 30 analyses of unknown zircon Z9910, previously dated by ID-TIMS at the GSC
- Analysed in 5 blocks of 6 analyses with interspersed analyses of 91500 (14) for calibration, and GJ-1 (5) and Temora2 (5) as secondary standards

Instrumentation and Conditions

Parameter

Laser Ablation system
Sample cell
ICP-MS
Spot size
Rep rate
Gas blank
Ablation
Element list (dwell time in ms)

Total acquisition time

Conditions

Photon Machines Analyte. 193
Helex 2-volume (99\% washout in <0.7s)
Agilent 7700 (Q) with additional interface pump
$34 \mu \mathrm{~m}$
5 Hz
30 s
60 s
${ }^{27} \mathrm{Al}(1),{ }^{29} \mathrm{Si}(5),{ }^{88} \mathrm{Sr}(5),{ }^{96} \mathrm{Zr}(5),{ }^{202} \mathrm{Hg}(20),{ }^{204} \mathrm{~Pb}(20)$, ${ }^{206} \mathrm{~Pb}(15),{ }^{207} \mathrm{~Pb}(50),{ }^{208} \mathrm{~Pb}(10),{ }^{232} \mathrm{Th}(10),{ }^{238} \mathrm{U}(10)$

100 s

Zircon Z9910 ID-TIMS data

						Isotopic Ratios ${ }^{4}$							
Fraction	Wt.	U	Pb^{1}	$\underline{206 \mathrm{~Pb}^{2}}$	Pb^{3}	$\underline{208 P b}$	207Pb	± 1 SE	206Pb	± 1 SE	Corr. ${ }^{5}$	$\underline{207 P b}$	± 1 SE
	ug	ppm	ppm	204Pb	pg	206Pb	235 U	Abs	238 U	Abs	Coeff.	206 Pb	Abs
08-SNB-T170A (Z9910)													
A1 (Z)	15	85	7	3779	1.5	0.22	0.54459	0.00080	0.07086	0.00009	0.78	0.05574	0.00005
A2 (Z)	12	144	11	5736	1.3	0.21	0.54529	0.00072	0.07084	0.00008	0.82	0.05583	0.00004
A4 (Z)	7	162	12	2691	1.9	0.21	0.54579	0.00081	0.07083	0.00008	0.76	0.05589	0.00005
A5 (Z)	7	76	6	2837	0.8	0.20	0.54458	0.00089	0.07069	0.00008	0.75	0.05587	0.00006
A6 (Z)	9	77	6	590	5.2	0.24	0.54856	0.00167	0.07095	0.00008	0.69	0.05608	0.00013

Fraction	Ages (Ma) ${ }^{6}$						Disc
	$\underline{206 P b}$	$\pm 2 \mathrm{SE}$	207Pb	$\pm 2 \mathrm{SE}$	207Pb	$\pm 2 \mathrm{SE}$	
	238 U		235 U		206 Pb		
08-SNB-T170A (Z9910)							
A1 (Z)	441.4	1.0	441.4	1.1	441.9	4.1	0.1
A2 (Z)	441.2	1.0	441.9	1.0	445.7	3.3	1.0
A4 (Z)	441.1	1.0	442.2	1.1	448.0	4.3	1.6
A5 (Z)	440.3	1.0	441.4	1.2	447.4	4.8	1.6
A6 (Z)	441.9	1.0	444.1	2.2	455.5	10.5	3.1

Zircon Z99910 ID-TIMS date

Zijcon $Z 9910$ ID-TIMS data

Zurcon 91500

Zircon Z9910 Drill through

```
ap04a17
```


Zircon Z9910 Common Pb

Zircon Z9910 Common Pb

ap04a21

Zircon Z9910 Spikes (U)

ap04a49

Sofitware Packages Evaluated

Software	Operator	ID.	Version and comments
Iolite	"A"	"A"	v. 2.3 C. 2.5, UPb_Geochronology3
Iolite/VizualAge	J. Petrus	JP"	VA DRS v. 2013.02, Iolite v. 2.5, Exponential fractionation model VA DRS v. 2013.02, Iolite v. 2.5, Double exponential fractionation model, no Pbc
UPb.Age	L. Scolari	LS	v. 300413
GLITTER	W. Powell S. Jackson	WP SJ	v. 4.4.4 v. 4.4.2, spikes filtered
UranOS	I. Dunkl I. Dunkl	ID ID‘15	v. 2.01 v. 2.06
UPb Redux	N. McLean	NM	Not included

Zircon Z9910 Whole signal integrated

Zircon Z9910 ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ Ages

${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ Age Relative Spread in Data (Max-Min)

Concordia

CP

Canadä̀

Weighted Mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ Age

"A"

CP

Natural Resources
Canada

Iolite/VizualAge Concordia JP
$6 B^{3}$
data-point error ellipses are 2σ

data-point error ellipses are 2σ

Iolite/VizualAge Weighted Mean ${ }^{206 P b /{ }^{38}} \mathrm{U}$ Age

GLITTER Concordia

SJ

WP

GLITTER Weighted Mean ${ }^{206 P b / 238 U}$ Age

WP

Natural Resources
Canada

Uranos Concordia

ID
 ID'15

Natural Resources
Canada
Ressources naturelles
Canada

Canadä̈

UranOS Wt. Mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ Age

ID

 ID'15

Natural Resources
Canada

Goncordia and Weighted Mean ${ }^{206 \mathrm{~Pb}}$ LS

Zircon Z9910 ${ }^{207} \mathrm{~Pb} / 206 \mathrm{~Pb}$ Ratios

Analysis Number

${ }^{207} \mathrm{~Pb} / 206 \mathrm{~Pb}$ Ratio Relative Spread in Data (Max-Min)

Analysis Number

Summary

ID	Wt. Mean 206/238 Age				Wt. Mean 207/206 Ratio			
	age (Ma)	95% conf	MSWD	Rel. Diff.	ratio	95% conf	MSWD	Rel. Diff.
"A"-Iolite	432.9	3.0	2.4	1.9%	0.05689	1.05%	1.6	-1.9%
CP-Iolite	432.4	2.6	5.6	2.0%	0.05675	0.86%	3.3	-1.6%
JP-Iolite/VA	433.7	3.5	13	1.7%	0.05632	0.60%	1.9	-0.9%
"B"-Iolite/VA	433.0	2.5	5.9	1.8%	0.05659	0.81%	4.4	-1.3%
SJ-GLITTER	434.8	2.4	3.4	1.4%	0.05620	0.62%	0.60	-0.6%
WP-GLITTER	434.5	2.8	2.1	1.5%	0.05619	0.57%	0.79	-0.6%
ID-UranOS	438.5	3.0	1.4	0.6%	0.05680	1.16%	2.1	-1.7%
ID'15-UranOS	434.9	3.2	2.9	1.4%	0.05646	0.92%	1.4	-1.1%
LS-UPb.Age	434.3	3.3	3.1	1.6%	0.05687	0.95%	2.8	-1.8%
Max	438.5	3.5	13.0	2.0%	0.05689	1.16%	4.4	-0.6%
Min	432.4	2.4	1.4	0.6%	0.05619	0.57%	0.6	-1.9%
Rel. Diff.	1.4%				1.3%			

Conclusions

- Processing of LA-ICP-MS U/Pb data induces significant variations in the results. In this study, typically:
- Ca. 3.1% on an individual ${ }^{206} \mathrm{~Pb} / 238 \mathrm{U}$ age, 2.8% on an individual ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratio
- Up to 1.4% on the weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age, 1.3% on the weighted mean ${ }^{207} \mathrm{~Pb} / 206 \mathrm{~Pb}$ ratio
- Encouragingly, excluding 1 result, the spread of weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages is only $0.6 \% ~(\pm 0.3 \%)$
- However, the excluded result is the only one that agrees with the ID-TIMS age (within 95% confidence interval)
- All weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages are young (0.6-2.0\%)
- Various approaches to correct Pb / U fractionation operate equally well, but are not perfect (precise but not accurate)
- Results are both software and operator dependent

Conclusions

- MSWD's for the weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages are all >1, mostly >2, indicating excess scatter (observed scatter exceeds that predicted by the quoted uncertainties):
- variable Pb / U fractionation
- single channel spikes, especially U
- common Pb
- MSWD's for ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ are >1, except one package (both users)
- Low MSWD's seem to reflect more effective avoidance of common Pb through judicious signal interval selection
- No reported data were common Pb-corrected (?) despite significant evidence of its presence
- The differences in reported ages and uncertainties are sufficient to cause significant differences in interpreted age when using unconstrained regressions

Recommendations

- Need to explore new approaches to mitigate/correct Pb/U fractionation
- Annealing?
- New software corrections

Need to instigate and more widely apply common-Pb correction AND, as ever,

- Judicious (painstaking) selection of integration intervals to avoid common Pb (Al, Sr, Ba), zones of Pb loss, and other artefacts
- Still need to instigate/apply more robust error propagation (see Horstwood et al., submitted)

